Aujourdâhui, on te parle dâun outil essentiel Ă la simplification de tes calculs et de tes Ă©quations : la factorisation ! Câest une notion clĂ© en mathĂ©matiques et il faut que tu la maĂźtrises. Pour tâaider, on tâa prĂ©parĂ© une fiche de cours. Tu es prĂȘt ? Câest parti ! đ
La factorisation, câest quoi ? đ
DĂ©finition đ
Selon le Robert, la factorisation est une « Ă©criture (dâune expression, dâun nombre) sous la forme dâun produit de facteur ».
En fait, factoriser, câest transformer en produit une expression ou un nombre qui ne lâest pas Ă la base. Tu vas mieux comprendre avec des exemples.
ou
Le facteur commun ici est 6 !
đĄ Le savais-tu ?
Pour rappel : les nombres premiers ne sont divisibles que par 1 et par eux-mĂȘme.
Il nâest donc pas possible de factoriser les nombres premiers, car on ne peut pas les dĂ©composer. Cependant ils servent Ă dĂ©composer au maximum un nombre.
Par exemple le nombre 12 peut ĂȘtre dĂ©composĂ© comme ceci : 12=2x2x3.
On arrĂȘte ici la dĂ©composition car 2 et 3 sont premiers. Et donc 12 peut ĂȘtre factorisĂ© comme ceci : 12=4×3.
On te dit ça car la mĂ©thode de la dĂ©composition dâun nombre permet de factoriser lorsque tu as des expressions plus complexes !
La factorisation, Ă quoi ça sert ? đ€
La factorisation sert à simplifier des expressions algébriques et à résoudre des équations.
Le fait de mettre sous forme de produit rĂ©duit lâexpression. Cela permet parfois dâĂ©liminer des nombres pour arriver plus facilement Ă rĂ©soudre une Ă©quation ou une division simple.
âȘïž Exemples
On a pu éliminer 4 et ça devient plus facile à résoudre !
On a pu éliminer 9 et ça devient plus simple à calculer !
Ton premier cours particulier est offert ! đ
Nos profs sont passés par les meilleures écoles et universités.
Factoriser une expression đ§
MĂ©thode 1 : trouver un facteur commun
La façon la plus évidente de factoriser est de trouver un nombre commun ou une expression commune.
âȘïž Exemples
đĄ IdĂ©e
Apprends bien tes tables de multiplication pour pouvoir factoriser rapidement !
Méthode 2 : trouver une identité remarquable
Pour factoriser, si tu as l’Ćil, tu peux trouver une identitĂ© remarquable.
đĄ Rappel des identitĂ©s remarquables
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
a2-b2=(a+b)(a-b)
âȘïž Exemples
Factoriser un polynĂŽme du second degrĂ© đ€š
Ăa se corse un peu ici. On tâexplique comment factoriser un polynĂŽme du second degrĂ©. Il y a plusieurs Ă©tapes Ă suivre. Sois attentif !
Rappel Ă©quation du second degrĂ© đĄ
DĂ©finition dâune Ă©quation du second degrĂ©
Une Ă©quation du second degrĂ© est une Ă©quation de la forme oĂč a, b et c sont des rĂ©els avec
DĂ©finition du discriminant
Une solution de cette Ă©quation s’appelle une racine du trinĂŽme
On appelle discriminant du trinÎme , le nombre réel, noté
.
Propriétés
Si alors
a deux solutions distinctes :
MĂ©thode pour factoriser đ€
Soit f, une fonction polynÎme du second degré défini sur par
Pour factoriser un polynÎme du second degré , on détermine le discriminant
Si alors pour tout réel
, on a
Si alors pour tout réel
, on a
Si alors il nâexiste pas de forme factorisĂ©e !
âȘïž Exemples
Calcul du discriminant :
â On ne peut pas factoriser
Calcul du discriminant :
â Il existe une solution unique
Calcul de la solution :
On factorise :
Besoin d’un prof particulier ? âš
Nos profs sont lĂ pour t’aider Ă progresser !
Exercices âïž
Exercice 1
Trouve le facteur commun pour factoriser les expressions suivantes :
1.
2.
3.
Exercice 2
Factorise Ă lâaide des identitĂ©s remarquables les expressions suivantes :
1.
2.
3.
CorrigĂ©s đŻ
Corrigé 1
1. RĂ©ponse : le facteur commun est 2.
2. RĂ©ponse : le facteur commun est 4.
3. RĂ©ponse : le facteur commun est 5.
Corrigé 2
1. LâidentitĂ© remarquable ici est avec a=7 et b=2. La factorisation de
est donc
2. LâidentitĂ© remarquable ici est avec a=2 et b=1. La factorisation de
est donc
3. LâidentitĂ© remarquable ici est avec a=3 et b=2. La factorisation de
est donc
Besoin de cours particuliers ? âš
4 points de plus sur ta moyenne avec nos profs Sherpas ! đ
Quiz
Pour vérifier que tu as bien compris la factorisation, réponds au quiz !
VoilĂ , notre fiche de cours sur la factorisation touche Ă sa fin. On espĂšre quâelle tâa aidĂ© Ă mieux la comprendre et Ă lâutiliser ! Cartonne en mathĂ©matiques avec les autres fiches de notre blog et en prenant des cours particuliers de maths avec un Sherpa.
FAQ â
Comment fait-on pour factoriser ?
Cherche des Ă©lĂ©ments communs ou structures pour simplifier l’expression. Utilise des techniques comme la mise en Ă©vidence de facteurs communs.
Quelle formule permet de factoriser par recherche d’un facteur commun ?
Identifie un terme commun. Pour ax + ay, a est le facteur commun, donc on obtient a(x + y).
Comment factoriser 6x + 9?
Le facteur commun est 3. Donc, 6x + 9 se factorise en 3(2x + 3).