Vous avez certainement entendu votre ado parler de factorisation et de développement, mais la notion vous échappe un peu ! 😬 Pas d’inquiétude, nous allons vous rappeler comment cela fonctionne et vous pourrez bientôt l’aider à faire ses exercices de mathématiques. C’est parti ! 🚀
Comprendre le développement
Le principe de développement est d’écrire une expression en somme (addition). Pour développer un produit, on utilise les règles de distributivités suivantes :
✅ k (a + b)= k x a + k x b
✅ (a + b)(c + d)= a x c + a x d + b x c + b x d
Exemples
Passons à présent aux exemples pour mieux comprendre.
Exemple 1️⃣ : -2(3X – 4) = (-2) x (3X) + (-2) x (-4)
= -6X + 8
Exemple 2️⃣ : (X – 2)(3X + 1) = X x 3X + X x 1 + (– 2) x 3X + (– 2) x 1
= 3X² + X – 6X – 2
= 3X² – 5X – 2
Avant de poursuivre, si votre ado a des difficultés dans cette matière, prenez-lui des cours de soutien en mathématiques chez les Sherpas pour que ses résultats atteignent des sommets.
Besoin d’un prof particulier exceptionnel ? ✨
Nos Sherpas sont là pour aider votre enfant à progresser et à prendre confiance en lui.
Comprendre la factorisation
Pour la factorisation, c’est l’inverse ! Il s’agit de transformer une équation en produit (multiplication). Le meilleur moyen de factoriser, c’est de repérer un facteur commun et d’utiliser la formule que nous avions vue au-dessus.
✅ k x a + k x b = k (a + b)
Exemples :
Exemple 1️⃣ : 2 – 2X = 2(1 – X) Vous l’aurez compris, le 2 est un facteur commun
Exemple 2️⃣ : (X + 2)(3X – 1) + (X + 2)(X – 5) = (X + 2)[(3X – 1) + (X – 5)]
= (X + 2)(4X – 6)
X + 2 est le facteur commun.
À lire aussi
Vous voulez que votre ado aussi se réconcilie avec les maths ? Lisez vite notre article !
Le premier cours particulier est offert ! 🎁
Aidez votre enfant en lui offrant des cours avec un étudiant passé par une des meilleures écoles de France.
Les identités remarquables
Les identités remarquables sont des formules qui permettent de simplifier certaines expressions mathématiques. Elles reviennent fréquemment dans les calculs de développement et de factorisation et sont utiles à connaître par cœur. 🗣️
Il y en a trois :
- (a + b)² = a² + 2ab +b²
- (a – b)² = a² – 2ab + b²
- a² – b² = (a – b)(a + b)
Exemples
Vous l’aurez compris, ces identités remarquables peuvent servir pour factoriser des équations.
1️⃣ X² + 10X + 25 = X² + 2X x 5 + 5²
= (X + 5)²
2️⃣ 9X² – 12X + 4 = (3X)² – 2 x 3X x 2 + 2²
= (3X – 2)²
3️⃣ 9X² – 16 = (3X)² – 4²
= (3X – 4)(3X + 4)
Vous pouvez aussi vous servir de ces formules pour développer des expressions.
1️⃣ (3X + 4)² = (3X)² + 2 x (3X) x 4 + 4²
= 9X² + 24X + 16
2️⃣ (X – 4)² = X² – 2X x 4 + 4²
= X² – 8X + 16
3️⃣ (3X – 1)(3X + 1) = (3X)² – 1²
= 9X² – 1
À lire aussi
En parlant de mathématiques, si vous voulez en savoir plus sur la proportionnalité, lisez vite notre article.
4 points en plus sur sa moyenne générale ! 📈
En étant accompagnés par un Sherpa, nos élèves gagnent 4 points sur leur moyenne en un an.
Petit récap’ 📜
✅ Le développement consiste à transformer une formule en somme (addition).
✅ La factorisation, elle, permet de transformer une expression en produit (multiplication).
✅ Les identités remarquables sont un ➕ pour faciliter une factorisation ou un développement.
The End pour cet article sur le développement et la factorisation ! On espère qu’il vous aura plu. Encore une fois, prenez des cours de soutien en maths en ligne si votre ado a des difficultés dans cette matière. Quant à nous, on vous revoit bientôt. 👋