\n
La commutativit\u00e9 est indispensable, sans l’hypoth\u00e8se “A et B commutent”, on ne peut pas appliquer la formule du bin\u00f4me de Newton !<\/p>\n\n <\/div>\n <\/section>\n\n\n\n\nPar exemple, avec et , on a \n \n \n \n \n et .\n \n Donc, .\n Tout ce qu’on peut \u00e9crire est : .\n\n\n\n
Remarque<\/strong> : On sait que les matrices scalaires commutent avec toutes les matrices de . Cette remarque peut faciliter le calcul des puissances de matrices.<\/p>\n\n\n\nExemple<\/strong> : <\/p>\n\n\n\n\nSoit . Calculer la puissance n-i\u00e8me de la matrice : .\n On pose de sorte que . On peut v\u00e9rifier facilement que la matrice est nilpotente d’ordre 3, ainsi : . Les matrices et commutent, d’apr\u00e8s la formule du bin\u00f4me de Newton : \n \n .\n \n Notons que : . \n \n On en d\u00e9duit que : , .\n\n\n\n\ud83d\udccdD\u00e9finition<\/span><\/strong> : <\/p>\n\n\n\n\nSoient tel que et .\n On d\u00e9finit la matrice par :\n <\/span> <\/span> <\/p>\nOn dit que est un polyn\u00f4me annulateur de si .\n\n\n\nExemple<\/strong> : <\/p>\n\n\n\n\nSoit . On a : . On en d\u00e9duit que le polyn\u00f4me est un polyn\u00f4me annulateur de .\n\n\n\nUn polyn\u00f4me annulateur permet notamment de trouver les puissances d\u2019une matrice (voir dans la partie \u00ab m\u00e9thodes pas \u00e0 pas \u00bb).<\/p>\n\n\n\n
\n
\n
<\/figure>\n<\/div>\n\n\n\n<\/div>\n\n\n\n
\n <\/div>\n
\n
Cet article est extrait de l’ouvrage Maths MPSI-MP2I. Tout-en-un : cours, m\u00e9thodes, entra\u00eenement et corrig\u00e9s<\/em>(\u00e9ditions Vuibert, juin 2021) \u00e9crit par E. Thomas, S. Bellec, G. Boutard. ISBN n\u00b09782311408720<\/em><\/p>\n\n <\/div>\n <\/section>\n<\/div>\n<\/div>\n\n\n\n \n
\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n<\/div>\n \n\n
\n
Tu as aim\u00e9 cet article ?<\/span>\n <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":"Si tu as compris ce qu’\u00e9tait la puissance d’un nombre, alors il n’y a aucune raison que tu (…)<\/p>\n","protected":false},"author":158,"featured_media":244639,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":false,"footnotes":""},"category":[803,810],"tag":[78,345],"class_list":["post-235631","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-apprendre-matiere","category-maths","tag-prepa","tag-prepa-scientifique"],"acf":[],"_links":{"self":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/235631","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/users\/158"}],"replies":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/comments?post=235631"}],"version-history":[{"count":0,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/235631\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media\/244639"}],"wp:attachment":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media?parent=235631"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/category?post=235631"},{"taxonomy":"tag","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/tag?post=235631"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}