<\/span> <\/p>\n\n\n\nD\u00e9monstration<\/h3>\n\n\n\n <\/p>\nIl suffit d’int\u00e9grer la relation entre et .\n\n\n\n
Exemple<\/h3>\n\n\n\n <\/p>\nSoit . Calculons par int\u00e9gration par parties :\non pose de sorte que et . Les fonctions et sont de classe sur si est positif (ou si est n\u00e9gatif), par int\u00e9gration par parties :\n
<\/span> <\/span> <\/p>\nLes primitives de sont donc les fonctions avec .\n\n\n\nProposition : Changement de variable<\/h3>\n\n\n\n <\/p>\nSoit une fonction continue sur un intervalle et une fonction de classe sur \u00e0 valeurs dans . Alors :\n
<\/span> <\/span> <\/p>\n\n\n\nD\u00e9monstration<\/h3>\n\n\n\n <\/p>\nEn utilisant les formules de d\u00e9rivations (notamment la d\u00e9riv\u00e9e d’une compos\u00e9e), on peut montrer que les fonctions et sont des primitives de sur qui s’annulent en . On en d\u00e9duit que ces fonctions sont \u00e9gales.\n\n\n\n
Exemple<\/h3>\n\n\n\n <\/p>\nCalculons par changement de variable : on pose , alors :\n
; <\/li>\n on d\u00e9termine les nouvelles bornes : lorsque , et lorsque , ; <\/li>\n on calcule l’\u00e9l\u00e9ment diff\u00e9rentiel : . <\/li> \nPar changement de variable, on a :\n <\/span> <\/span> <\/p>\n\n\n\n\n
\n
<\/figure>\n<\/div>\n\n\n\n<\/div>\n\n\n\n
\n
<\/div>\n\n\n\n
Cet article est extrait de l’ouvrage Maths MPSI-MP2I. Tout-en-un : cours, m\u00e9thodes, entra\u00eenement et corrig\u00e9s <\/em>(\u00e9ditions Vuibert, juin 2021) <\/em>\u00e9crit par E. Thomas, S. Bellec, G. Boutard. ISBN n\u00b09782311408720<\/em><\/p>\n<\/div>\n<\/div>\n\n\n\n \n
\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n<\/div>\n \n\n
\n 3.7\/5 - (3 votes) <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":"
Vous travaillez actuellement sur des calculs de primitives ? Gr\u00e2ce \u00e0 ce cours d\u00e9di\u00e9 \u00e0 la m\u00e9thode de (…)<\/p>\n","protected":false},"author":158,"featured_media":161830,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":true,"footnotes":""},"category":[803,810],"tag":[78,345],"class_list":["post-235119","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-apprendre-matiere","category-maths","tag-prepa","tag-prepa-scientifique"],"acf":[],"_links":{"self":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/235119","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/users\/158"}],"replies":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/comments?post=235119"}],"version-history":[{"count":0,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/235119\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media\/161830"}],"wp:attachment":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media?parent=235119"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/category?post=235119"},{"taxonomy":"tag","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/tag?post=235119"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}