On pose et . On divise tous les membres de l’\u00e9quation ( ) par . On est alors amen\u00e9s \u00e0 r\u00e9soudre <\/li>\n <\/span> <\/span> <\/p>\n On trouve une solution particuli\u00e8re de l’\u00e9quation en d\u00e9terminant la relation de B\u00e9zout entre et . On obtient tel que . On multiplie cette relation par pour obtenir la solution particuli\u00e8re de :\n <\/span> <\/span> <\/p> <\/li>\n \n On remarque alors, en soustrayant terme \u00e0 terme les relations et , que le couple v\u00e9rifie :\n \n <\/span> <\/span> <\/p>\n \nEn utilisant le th\u00e9or\u00e8me de Gauss, comme , on en d\u00e9duit que divise , soit :\n \n <\/span> <\/span> <\/p>\n \nOn trouve en fonction de en substituant dans la relation pr\u00e9c\u00e9dente.<\/li>\n\n\n\nApplication de la m\u00e9thode<\/h2>\n\n\n\n<\/div>\n\n\n\n\nR\u00e9soudre dans
l’\u00e9quation
.\n
En appliquant l’algorithme d’Euclide, on peut montrer que . 12 est divisible par 4 donc, donc l’\u00e9quation admet des solutions. <\/li>\n On divise l’\u00e9quation par 4. On va donc r\u00e9soudre o\u00f9 . <\/li>\n On cherche une solution particuli\u00e8re de . Comme , il existe tel que . On va d\u00e9terminer les coefficients de B\u00e9zout et :\n <\/span> <\/span> <\/p>\n <\/span> <\/span> <\/p>\n Finalement, on a : \n <\/span> <\/span> <\/p>\n Une solution particuli\u00e8re de l’\u00e9quation modifi\u00e9e est .<\/li>\n On a :\n <\/span> <\/span> <\/p>\n Donc 15 divise le produit , mais , d’apr\u00e8s le th\u00e9or\u00e8me de Gauss, 15 divise . On en d\u00e9duit qu’il existe tel que . De plus :\n <\/span> <\/span> <\/p><\/li>\n Finalement, les solutions de l’\u00e9quation sont les couples avec .\n\n\n\n\n
\n
<\/figure>\n<\/div>\n\n\n\n<\/div>\n\n\n\n
\n
<\/div>\n\n\n\n
Cet article est extrait de l’ouvrage Maths MPSI-MP2I. Tout-en-un : cours, m\u00e9thodes, entra\u00eenement et corrig\u00e9s <\/em>(\u00e9ditions Vuibert, juin 2021) <\/em>\u00e9crit par E. Thomas, S. Bellec, G. Boutard. ISBN n\u00b09782311408720<\/em><\/p>\n<\/div>\n<\/div>\n\n\n\n \n
\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n<\/div>\n \n\n
\n
Tu as aim\u00e9 cet article ?<\/span>\n <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":"Dans cet article, nous te pr\u00e9sentons la m\u00e9thode pour r\u00e9soudre une \u00e9quation diophantienne rapidement et simplement. Autrement dit, (…)<\/p>\n","protected":false},"author":158,"featured_media":232900,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":true,"footnotes":""},"category":[803,810],"tag":[78,345],"class_list":["post-234243","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-apprendre-matiere","category-maths","tag-prepa","tag-prepa-scientifique"],"acf":[],"_links":{"self":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/234243","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/users\/158"}],"replies":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/comments?post=234243"}],"version-history":[{"count":0,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/234243\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media\/232900"}],"wp:attachment":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media?parent=234243"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/category?post=234243"},{"taxonomy":"tag","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/tag?post=234243"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}