<\/div>\n\n\n\n\n2. Montrer que pour tout
<\/div>\n\n\n\n\n3. On note
. Montrer que (
) est un groupe.\n\n\n\n
Corrig\u00e9 de l’exercice d’application sur les structures alg\u00e9briques<\/strong><\/p>\n\n\n\n\n1. Si est ab\u00e9lien, alors .\n\n\n\n<\/div>\n\n\n\n\n2. \n
Soit . Soit . On a : <\/li>\n\n\n\n<\/div>\n\n\n\n\n
<\/span> <\/span> <\/p>\n\n\n\n<\/div>\n\n\n\n\nOn a montr\u00e9 que
est un morphisme de groupe.\n\n\n\n
<\/div>\n\n\n\n\n
Soit . Soit . On a : <\/li>\n\n\n\n<\/div>\n\n\n\n\n
<\/span> <\/span> <\/p>\n\n\n\n<\/div>\n\n\n\n\nOn en d\u00e9duit que
admet un unique ant\u00e9c\u00e9dent par
, ainsi
est bijective.\n\n\n\n
<\/div>\n\n\n\n\nOn a montr\u00e9 que
est un automorphisme de groupe et
. On a montr\u00e9 que
est un sous-groupe de l’ensemble des bijections de
sur
, donc c’est un groupe.\n\n\n\n
<\/div>\n\n\n\n\n3. Il est clair que
. Soit
. Montrons que
. Pour tout
, on a :\n
<\/span> <\/span> <\/p>\nAinsi, .\n\n\n\n\n
\n
<\/figure>\n<\/div>\n\n\n\n<\/div>\n\n\n\n
\n
<\/div>\n\n\n\n
Cet article est extrait de l’ouvrage Maths MPSI-MP2I. Tout-en-un : cours, m\u00e9thodes, entra\u00eenement et corrig\u00e9s <\/em>(\u00e9ditions Vuibert, juin 2021) <\/em>\u00e9crit par E. Thomas, S. Bellec, G. Boutard. ISBN n\u00b09782311408720<\/em><\/p>\n<\/div>\n<\/div>\n\n\n\n \n
\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n \n
\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n
\n \n\n
<\/div>\n <\/div>\n <\/div>\n<\/div>\n \n\n
\n 4\/5 - (6 votes) <\/div>\n <\/div>\n","protected":false},"excerpt":{"rendered":"
Tu connais ton cours sur les structures alg\u00e9briques ? Tu cherches d\u00e9sormais des exercices corrig\u00e9s pour t’entra\u00eener et (…)<\/p>\n","protected":false},"author":158,"featured_media":244622,"comment_status":"open","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":false,"footnotes":""},"category":[803,810],"tag":[78,345],"class_list":["post-234000","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-apprendre-matiere","category-maths","tag-prepa","tag-prepa-scientifique"],"acf":[],"_links":{"self":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/234000","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/users\/158"}],"replies":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/comments?post=234000"}],"version-history":[{"count":0,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/posts\/234000\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media\/244622"}],"wp:attachment":[{"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/media?parent=234000"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/category?post=234000"},{"taxonomy":"tag","embeddable":true,"href":"https:\/\/sherpas.com\/blog\/wp-json\/wp\/v2\/tag?post=234000"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}